Better shrinkage than Shrinky-Dinks.

نویسندگان

  • Diep Nguyen
  • Douglas Taylor
  • Kun Qian
  • Nizilla Norouzi
  • Jerald Rasmussen
  • Steve Botzet
  • Matt Lehmann
  • Kurt Halverson
  • Michelle Khine
چکیده

Polyolefins are finding increased popularity in microfluidic applications due to their attractive mechanical, processing, and optical properties. While intricate features are typically realized in these thermoplastics by hot embossing and injection molding, such fabrication approaches are expensive and slow. Here, we apply our shrink-induced approach-first demonstrated with polystyrene 'Shrinky-Dink' sheets-to create micro- and nanostructures with cross-linked polyolefin thin films. These multi-layered films shrink by 95% and with greater uniformity than the Shrinky-Dinks. With such significant reduction in size, along with attractive material properties, such commodity films could find important applications in low cost microfluidic prototyping as well as in point-of-care diagnostics. In this technical note, we demonstrate the ability to rapidly and easily create unique microstructures, increase microarray feature density, and even induce self-assembled integrated metallic nanostructures with these shrink wrap films.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential shrink photolithography for plastic microlens arrays.

Endeavoring to push the boundaries of microfabrication with shrinkable polymers, we have developed a sequential shrink photolithography process. We demonstrate the utility of this approach by rapidly fabricating plastic microlens arrays. First, we create a mask out of the children's toy Shrinky Dinks by simply printing dots using a standard desktop printer. Upon retraction of this pre-stressed ...

متن کامل

Shrinky-Dink microfluidics: 3D polystyrene chips.

We present a novel approach for the ultra-rapid direct patterning of complex three-dimensional, stacked polystyrene (PS) microfluidic chips. By leveraging the inherent shrinkage properties of biaxially pre-stressed thermoplastic sheets, microfluidic channels become thinner and deeper upon heating. Design conception to fully functional chips can thus be completed within minutes.

متن کامل

Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns.

We present a rapid and non-photolithographic approach to microfluidic pattern generation by leveraging the inherent shrinkage properties of biaxially oriented polystyrene thermoplastic sheets. This novel approach yields channels deep enough for mammalian cell assays, with demonstrated heights up to 80 microm. Moreover, we can consistently and easily achieve rounded channels, multi-height channe...

متن کامل

Adaptive wettability-enhanced surfaces ordered on molded etched substrates using shrink film

Superhydrophobic surfaces in nature exhibit desirable properties including self-cleaning, bacterial resistance, and flight efficiency. However, creating such intricate multi-scale features with conventional fabrication approaches is difficult, expensive, and not scalable. By patterning photoresist on pre-stressed shrink-wrap film, which contracts by 95% in surface area when heated, such feature...

متن کامل

برآورد انقباضی در مدل‌های رگرسیونی بیضوی مقید

In the restricted elliptical linear model, an approximation for the risk of a general shrinkage estimator of the regression vector-parameter is given. Superiority condition of the shrinkage estimator over the restricted estimator is investigated under the elliptical assumption. It is evident from numerical results that the shrinkage estimator performs better than the unrestricted one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 10 12  شماره 

صفحات  -

تاریخ انتشار 2010